DATE OF REPORT: 2ND FEBRUARY 2023

Greg Simpson Maintenance Engineer Morgan Cement International Pty Ltd P.O. Box 230 Port Kembla NSW 2505

TEST REPORT NO. NOV22174.1

AIR EMISSIONS MONITORING OF CEMENT MILL 1, 2 & 3 EXHAUST STACKS AT MORGAN CEMENT INTERNATIONAL IN PORT KEMBLA

DATE OF TESTING: 22ND NOVEMBER 2022

ACCREDITATION:

This laboratory is accredited by the National Association of Testing Authorities (NATA). NATA Accredited Laboratory No. 15463. Accredited for compliance with ISO/IEC 17025 – Testing. This document shall not be reproduced, except in full.

AUTHORISATION:

Dr. C.M. Clunies-Ross PhD(Chem.Eng.) LABORATORY MANAGER

EXECUTIVE SUMMARY

Airlabs Environmental Pty Ltd was commissioned by Morgan Cement International Pty Ltd to monitor air emissions from the Cement Mill 1, 2 & 3 Exhaust Stacks at the Port Kembla plant to ensure compliance with the site's operating licence. All sampling was conducted by Airlabs Environmental on the 22nd November 2022.

Analysis was undertaken by Airlabs Environmental and the National Measurement Institute (NMI) in accordance with our scope of NATA accreditation. Unless otherwise indicated, the methods cited in this report have been performed without deviation.

The following results comparison table shows that the concentrations of all analytes were below the limits set by the NSW EPA (refer to Environment Protection License No. 12643, issued on 6^{th} September 2016).

Table 1: Results Summary – Cement Mill 1, 2 & 3 Exhaust Stacks

Parameter	Concentration (mg/m ³) (mg/m ³)		Emission Rate (g/min)
	Cement Mill 1 Exha	ust Stack	
Total Solid Particles	< 1	20	< 1
PM ₁₀ Particles	< 1	N/A	< 1
Type 1 & 2 substances •	0.062	1.0	0.025
	Cement Mill 2 Exha	ust Stack	
Total Solid Particles	< 1	20	< 0.4
PM ₁₀ Particles	< 1	N/A	< 0.4
Type 1 & 2 substances a	0.0022	1.0	0.00077
	Cement Mill 3 Exha	ust Stack	
Total Solid Particles	< 1	20	< 1
PM10 Particles	< 1	N/A	< 1
Type 1 & 2 substances ^a	0.0014	1.0	0.0019

^a Type 1 & 2 substances include As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, Sn, V & their compounds

TABLE OF CONTENTS

Page
2
4
4
4
5
5
6
7
11

LIST OF TABLES

Table 1: Results Summary – Cement Mill 1, 2 & 3 Exhaust Stacks	.2
Table 2: Summary of Test Methods	.5
Table 3: Criteria for the Selection of Sampling Planes	
Table 4: Sampling Plane Details for the Cement Mill 1 Exhaust Stack	. 8
Table 5: Sampling Plane Details for the Cement Mill 2 Exhaust Stack	
Table 6: Sampling Plane Details for the Cement Mill 3 Exhaust Stack	10
Table 7: Cement Mill 1 Exhaust Stack - Gas flow conditions	11
Table 8: Cement Mill 1 Exhaust Stack - Summary of test results	12
Table 9: Cement Mill 1 Exhaust Stack – Type 1 & 2 substances and their compounds	12
Table 10: Cement Mill 2 Exhaust Stack - Gas flow conditions	13
Table 11: Cement Mill 2 Exhaust Stack - Summary of test results	
Table 12: Cement Mill 2 Exhaust Stack – Type 1 & 2 substances and their compounds	14
Table 13: Cement Mill 3 Exhaust Stack - Gas flow conditions	15
Table 14: Cement Mill 3 Exhaust Stack - Summary of test results	16
Table 15: Cement Mill 3 Exhaust Stack – Type 1 & 2 substances and their compounds	

LIST OF FIGURES

Figure 1	I : Cement	Mill 1	I, 2 & 3 E	xhaust Stack loo	cations at Gate 7 Foreshore Rd, Po	rt Kembla, NSW6
Figure 2	2: Cement	Mill 1	Exhaust	Stack sampling	location	
-					location	
					location	

INTRODUCTION

Airlabs Environmental Pty Ltd was commissioned by Morgan Cement International Pty Ltd to conduct air emissions testing of the Cement Mill 1, 2 & 3 Exhaust Stacks at the Port Kembla plant. All sampling was conducted on the 22nd November 2022 for the following parameters:

- Gas velocity and volume flow rate
- Temperature
- Concentration of water vapour (moisture content)
- Concentration of oxygen & carbon dioxide
- Dry molecular weight and dry gas density
- Concentration and mass emission rate of:
 - Total solid particles;
 - PM_{10} (Particulate matter with a nominal aerodynamic diameter $\leq 10 \mu$ m);
 - Type 1 & 2 substances ^b

DEFINITIONS

Table 2: Terms and definitions

US EPA	United States Environmental Protection Agency.
NSW EPA	New South Wales Environment Protection Authority.
NMI	National Measurement Institute (Australian Government), North Ryde, NSW.
K	Absolute temperature in Kelvin (°C + 273).
mB	Pressure in millibars.
STP	Standard temperature and pressure (273K and 101.3 kPa).
m ³	Actual gas volume in cubic metres at stack conditions.
Nm ³	Gas volume in dry cubic metres at STP.
<	Less than. The value stated is the limit of detection.
g	Grams.
mg	Milligrams (10 ⁻³ grams).
μg	Micrograms (10 ⁻⁶ grams).
ng	Nanograms (10 ⁻⁹ grams).
min	Minute.
N/A	Not applicable.
PM 10	Particulate matter with a nominal aerodynamic diameter $\leq 10~\mu\text{m}.$

QUALITY STATEMENT

Airlabs Environmental is committed to providing the highest quality data to all our clients, as reflected in our ISO 17025 (NATA) accreditation. This requires strict adherence to, and continuous improvement of, all our processes and test work. Our goal is to exceed the QA/QC requirements as set by our clients and appropriate governmental entities and to ensure that all data generated is scientifically valid and defensible.

Airlabs Environmental is NATA accredited for all sampling undertaken for this project. Analysis was undertaken by the National Measurement Institute (NATA Accreditation No. 198) and Airlabs Environmental in accordance with our scope of accreditation.

^b Type 1 & 2 substances include As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, Sn, V & their compounds

TEST METHODS

All sampling was undertaken by Airlabs Environmental. Airlabs Environmental is NATA accredited for all sampling undertaken for this project (NATA Accredited Laboratory No. 15463). Analysis was undertaken by Airlabs Environmental and the National Measurement Institute (NMI, NATA Accreditation No. 198) in accordance with our scope of accreditation. Specific details of the test methods used are available upon request.

Table 2: Summary	of Test Methods
------------------	-----------------

	-	Method Detection	Estimated	NATA Accredited	
Test Parameter	Test Method	Limit	Measurement Uncertainty	Sampling	Analysis
Sample plane criteria	NSW EPA TM-1	N/A	N/A	\checkmark	N/A
Gas velocity	NSW EPA TM-2	3 m/s	±13%	\checkmark	\checkmark
Temperature	NSW EPA TM-2	273K (0°C)	± 2.6%	\checkmark	\checkmark
Moisture content	NSW EPA TM-22	0.2%	± 12.2%	\checkmark	\checkmark
Oxygen & carbon dioxide	NSW EPA TM-24 & TM-25	0.1%	± 6.0%	\checkmark	\checkmark
Dry molecular weight & gas density	NSW EPA TM-23	N/A	±13.1%	\checkmark	\checkmark
Total solid particles	NSW EPA TM-15	1 mg/Nm ³	± 7%	\checkmark	\checkmark
PM 10	NSW EPA TM-5	1 mg/Nm ³	± 12.2%	\checkmark	\checkmark
Type 1 & 2 substances and their compounds	NSW EPA TM-12, 13 & 14	0.05 mg/Nm ³ (total metals)	± 29.1%	\checkmark	√ 1

 Analysis of Type 1 & 2 substances and their compounds was performed on the various sample components by NMI, with results included in their Report No. RN1375510

DEVIATIONS & INFLUENCING FACTORS

There were no deviations from the test methods and no significant influencing factors were recorded.

It must be noted that these results are accurate for the air emissions at the time of testing and may not reflect long term trends. Variations in factors such as raw material composition, plant processes, operating conditions and maintenance of plant may influence future test results.

SAMPLING LOCATIONS

Figure 1: Cement Mill 1, 2 & 3 Exhaust Stack locations at Gate 7 Foreshore Rd, Port Kembla, NSW

SUITABILITY OF SAMPLING PLANE

Section 4.1 in AS4323.1-1995 'Stationary Source Emissions, Method 1: Selection of Sampling Provisions' states that, in the absence of cyclonic flow activity, ideal sampling plane conditions are found to exist at the positions given in Table 4 below.

Type of flow disturbance	Minimum distance upstream from disturbance, diameters (D)	Minimum distance downstream from disturbance, diameters (D)
Bend, connection, junction, direction change	>2D	>6D
Louvre, butterfly damper (partially closed or closed)	>3D	>6D
Axial fan	>3D	>8D (see Note)
Centrifugal fan	>3D	>6D

Table 3: Criteria for the Selection of Sampling Planes

NOTE: The plane should be selected as far as practicable from a fan. Flow straighteners may be required to ensure the position chosen meets the check criteria listed in Items (a) to (f) below.

Section 4.1 of AS 4323.1-1995 (Ideal Sampling Positions) states that the location of the sampling plane shall be such that it meets the following criteria:

- (a) The gas flow is basically in the same direction at all points along each sampling traverse.
- (b) The gas velocity at all sampling points is greater than 3 m/s.
- (c) The gas flow profile at the sampling plane shall be steady, evenly distributed and not have a cyclonic component which exceeds an angle of 15° to the duct axis, when measured near the periphery of a circular sampling plane.
- (d) The temperature difference between adjacent points of the survey along each sampling traverse is less than 10% of the absolute temperature, and the temperature at any point differs by less than 10% from the mean.
- (e) The ratio of the highest to lowest pitot pressure difference shall not exceed 9:1 and the ratio of highest to lowest gas velocities shall not exceed 3:1. For isokinetic testing with the use of impingers, the gas velocity ratio across the sampling plane should not exceed 1.6:1.
- (f) The gas temperature at the sampling plane should preferably be above the dewpoint.

The sampling plane locations for the Cement Mill 1, 2 & 3 Exhaust Stacks did not satisfy the requirements of AS 4323.1-1995 Section 4.1 Criteria for Selection of Sampling Planes due to insufficient distance between the sampling plane and the upstream and/or downstream disturbances, and as such the sampling locations for the stacks are considered non-ideal. The gas characteristics for the Cement Mill 1, 2 & 3 Exhaust Stacks satisfied the requirements of AS 4323.1-1995 Section 4.1 (a) - (f). The sampling plane details and required number of sampling points are given in the tables below.

SUITABILITY OF SAMPLING PLANE Continued

Table 4: Sampling Plane Details for the Cement Mill 1 Exhaust Stack

Parameter	
Stack Shape	Circular
Stack Diameter (m) at Sampling Plane	0.850
Direction of Discharge to Air	Vertical
Type of Flow Disturbance	Bend
Sampling Plane Distance Downstream from Disturbance	4D (<6D)
Type of Flow Disturbance	Butterfly Damper
Sampling Plane Distance Upstream from Disturbance	1D (<2D)
Compliance with AS 4232.1 Section 4.1 Criteria for Selection of Sampling Planes	No
Required No. and Orientation of Access Holes	2 at 90°
Available No. and Orientation of Access Holes	2 at 90°
Compliance with AS 4232.1 Section 6 Sampling Access Holes	Yes
Standard No. of Sampling Points per Traverse	6
Number of Traverses	2
Correction Factor	1.265
Corrected No. of Sampling Points per Traverse	8
Total No. of Sampling Points	16
Gas Flow Direction is Consistent at all Points	Yes
Minimum Velocity at any Sample Point (m/s)	13 (>3)
Stratified Gas Flow	No
Cyclonic Gas Flow	No (<15°)
Absolute Temperature Difference (K)	1 (<10%)
Pitot Pressure Difference	1.8:1 (<9:1)
Gas Velocity Difference (Isokinetic)	1.3:1 (<1.6:1)
Gas Temperature above Dew Point	Yes
Compliance with AS 4232.1 Section 4.1 (a)-(f)	Yes

Figure 2: Cement Mill 1 Exhaust Stack sampling location

SUITABILITY OF SAMPLING PLANE Continued

Table 5: Sampling Plane Details for the Cement Mill 2 Exhaust Stack

Parameter	
Stack Shape	Circular
Stack Diameter (m) at Sampling Plane	0.850
Direction of Discharge to Air	Vertical
Type of Flow Disturbance	Bend
Sampling Plane Distance Downstream from Disturbance	4D (<6D)
Type of Flow Disturbance	Butterfly Damper
Sampling Plane Distance Upstream from Disturbance	1D (<2D)
Compliance with AS 4232.1 Section 4.1 Criteria for Selection of Sampling Planes	No
Required No. and Orientation of Access Holes	2 at 90°
Available No. and Orientation of Access Holes	2 at 90°
Compliance with AS 4232.1 Section 6 Sampling Access Holes	Yes
Standard No. of Sampling Points per Traverse	6
Number of Traverses	2
Correction Factor	1.265
Corrected No. of Sampling Points per Traverse	8
Total No. of Sampling Points	16
Gas Flow Direction is Consistent at all Points	Yes
Minimum Velocity at any Sample Point (m/s)	11 (>3)
Stratified Gas Flow	No
Cyclonic Gas Flow	No (<15°)
Absolute Temperature Difference (K)	5 (<10%)
Pitot Pressure Difference	1.7:1 (<9:1)
Gas Velocity Difference (Isokinetic)	1.3:1 (<1.6:1)
Gas Temperature above Dew Point	Yes
Compliance with AS 4232.1 Section 4.1 (a)-(f)	Yes

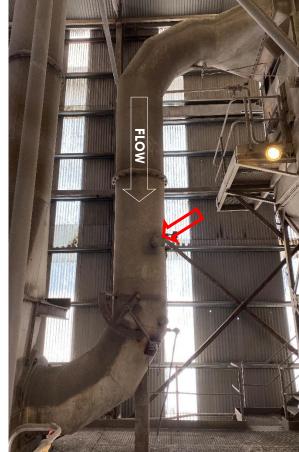


Figure 3: Cement Mill 2 Exhaust Stack sampling location

Airlabs Environmental

SUITABILITY OF SAMPLING PLANE Continued

Table 6: Sampling Plane Details for the Cement Mill 3 Exhaust Stack

Parameter	
Stack Shape	Rectangular
Stack Dimensions (m) at Sampling Plane	1.77 x 0.800
Direction of Discharge to Air	Horizontal
Type of Flow Disturbance	Centrifugal Fan
Sampling Plane Distance Downstream from Disturbance	3.4D (<6D)
Type of Flow Disturbance	Stack Exit
Sampling Plane Distance Upstream from Disturbance	4.9D (>2D)
Compliance with AS 4232.1 Section 4.1 Criteria for Selection of Sampling Planes	No
Required No. and Orientation of Access Holes	4 (long side)
Available No. and Orientation of Access Holes	3 (long side)
Compliance with AS 4232.1 Section 6 Sampling Access Holes	No
Standard No. of Sampling Points per Traverse	2
Number of Traverses	4
Correction Factor	1.15
Corrected No. of Sampling Points per Traverse	3
Total No. of Sampling Points	12
Gas Flow Direction is Consistent at all Points	Yes
Minimum Velocity at any Sample Point (m/s)	17 (>3)
Stratified Gas Flow	No
Cyclonic Gas Flow	No (<15°)
Absolute Temperature Difference (K)	2 (<10%)
Pitot Pressure Difference	2.0:1 (<9:1)
Gas Velocity Difference (Isokinetic)	1.4:1 (<1.6:1)
Gas Temperature above Dew Point	Yes
Compliance with AS 4232.1 Section 4.1 (a)-(f)	Yes

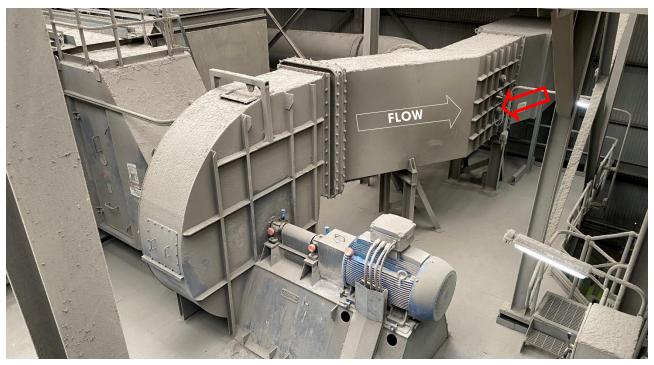


Figure 4: Cement Mill 3 Exhaust Stack sampling location

RESULTS - Cement Mill 1 Exhaust Stack

Company	Morgan Cement International Pty Ltd
Site	Foreshore Rd, Port Kembla
Source Tested	Cement Mill 1 Exhaust Stack
Operating Conditions	Normal
Date of Tests	22 nd November 2022
Sampling Period	12:25 – 14:25 (120 minutes per test)
Testing Officers	P. Collins & P.K. Collins
Sampling Position	Two 110 mm flanges in a circular metal duct

Table 7: Cement Mill 1 Exhaust Stack - Gas flow conditions

Sampling Conditions	
Stack diameter at sampling plane (m)	0.85
Average stack gas temperature (K)	339 (66°C)
Average barometric pressure (mB)	1011.1
Average static pressure (mB)	-24.4
Average stack pressure (mB)	986.7
Average moisture content (%v/v)	0.65
Average oxygen concentration, dry basis (%v/v)	20.9
Average carbon dioxide concentration, dry basis (%v/v)	0.040
Dry molecular weight of stack gas (g/g mole)	28.84
Wet molecular weight of stack gas (g/g mole)	28.77
Dry gas density of stack gas (kg/m³)	1.287
Wet gas density of stack gas (kg/m ³)	1.284
Average velocity at sampling plane (m/s)	15.5
Actual gas flow rate (m ³ /min)	529
Gas flow rate at STP, dry (Nm ³ /min)	413

RESULTS – Cement Mill 1 Exhaust Stack continued

Parameter	Sampling Period	Concentration (mg/m³)	NSW EPA Limit (mg/m³)	Emission Rate (g/min)
Total Solid Particles	13:21 – 14:21	< 1	20	< 1
PM ₁₀ Particles	13:21 - 14:21	< 1	N/A	< 1
Type 1 & 2 substances ^c	12:25 – 14:25	0.062	1.0	0.025

Table 8: Cement Mill 1 Exhaust Stack - Summary of test results

Table 9: Cement Mill 1 Exhaust Stack – Type 1 & 2 substances and their compounds

Metal	Concentration (mg/Nm³)	Emission Rate (g/min)
Type 1 substances and their compounds		
Antinomy (Sb) & its compounds	< 0.0002	< 0.00008
Arsenic (As) & its compounds	< 0.0002	< 0.0008
Cadmium (Cd) & its compounds	< 0.00004	< 0.00002
Lead (Pb) & its compounds	0.00032	0.00013
Mercury (Hg) & its compounds	0.000040	0.000017
Type 2 substances and their compounds		
Beryllium (Be) & its compounds	< 0.0002	< 0.0008
Chromium (Cr) & its compounds	0.00049	0.00020
Cobalt (Co) & its compounds	< 0.0002	< 0.0008
Manganese (Mn) & its compounds	0.0035	0.0014
Nickel (Ni) & its compounds	0.00038	0.00016
Selenium (Se) & its compounds	< 0.0002	< 0.0008
Tin (Sn) & its compounds	< 0.0002	< 0.0008
Vanadium (V) & its compounds	< 0.0002	< 0.0008
TOTAL TYPE 1 & 2 SUBSTANCES AND THEIR COMPOUNDS	0.062	0.025

^c Type 1 & 2 substances include As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, Sn, V & their compounds

RESULTS – Cement Mill 2 Exhaust Stack

Company	Morgan Cement International Pty Ltd
Site	Foreshore Rd, Port Kembla
Source Tested	Cement Mill 2 Exhaust Stack
Operating Conditions	Normal
Date of Tests	22 nd November 2022
Sampling Period	09:50 – 12:01 (120 minutes per test)
Testing Officers	P. Collins & P.K. Collins
Sampling Position	Two 110 mm flanges in a circular metal duct

Table 10: Cement Mill 2 Exhaust Stack - Gas flow conditions

Sampling Conditions	
Stack diameter at sampling plane (m)	0.85
Average stack gas temperature (K)	339 (66°C)
Average barometric pressure (mB)	1012.1
Average static pressure (mB)	-18.4
Average stack pressure (mB)	993.7
Average moisture content (%v/v)	0.52
Average oxygen concentration, dry basis (%v/v)	20.9
Average carbon dioxide concentration, dry basis (%v/v)	0.040
Dry molecular weight of stack gas (g/g mole)	28.84
Wet molecular weight of stack gas (g/g mole)	28.79
Dry gas density of stack gas (kg/m³)	1.287
Wet gas density of stack gas (kg/m³)	1.285
Average velocity at sampling plane (m/s)	13.1
Actual gas flow rate (m ³ /min)	445
Gas flow rate at STP, dry (Nm ³ /min)	350

RESULTS – Cement Mill 2 Exhaust Stack continued

Parameter	Sampling Period	Concentration (mg/m³)	NSW EPA Limit (mg/m ³)	Emission Rate (g/min)
Total Solid Particles	11:01 – 12:01	< 1	20	< 0.4
PM ₁₀ Particles	11:01 - 12:01	< 1	N/A	< 0.4
Type 1 & 2 substances ^d	09:50 – 11:50	0.0022	1.0	0.00077

Table 11: Cement Mill 2 Exhaust Stack - Summary of test results

Table 12: Cement Mill 2 Exhaust Stack – Type 1 & 2 substances and their compounds

Metal	Concentration (mg/Nm³)	Emission Rate (g/min)		
Type 1 substances and their compounds				
Antinomy (Sb) & its compounds	< 0.0002	< 0.00007		
Arsenic (As) & its compounds	< 0.0002	< 0.00007		
Cadmium (Cd) & its compounds	< 0.00004	< 0.00001		
Lead (Pb) & its compounds	0.00049	0.00017		
Mercury (Hg) & its compounds	< 0.00004	< 0.00001		
Type 2 substances and their compounds				
Beryllium (Be) & its compounds	< 0.0002	< 0.00007		
Chromium (Cr) & its compounds	0.00046	0.00016		
Cobalt (Co) & its compounds	< 0.0002	< 0.00007		
Manganese (Mn) & its compounds	0.0010	0.00035		
Nickel (Ni) & its compounds	0.00024	0.000084		
Selenium (Se) & its compounds	< 0.0002	< 0.00007		
Tin (Sn) & its compounds	< 0.0002	< 0.00007		
Vanadium (V) & its compounds	< 0.0002	< 0.00007		
TOTAL TYPE 1 & 2 SUBSTANCES AND THEIR COMPOUNDS	0.0022	0.00077		

^d Type 1 & 2 substances include As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, Sn, V & their compounds

RESULTS – Cement Mill 3 Exhaust Stack

Company	Morgan Cement International Pty Ltd
Site	Foreshore Rd, Port Kembla
Source Tested	Cement Mill 3 Exhaust Stack
Operating Conditions	Normal
Date of Tests	22 nd November 2022
Sampling Period	14:55 – 16:55 (120 minutes per test)
Testing Officers	P. Collins & P.K. Collins
Sampling Position	Three 4" sockets in a rectangular metal duct

Table 13: Cement Mill 3 Exhaust Stack - Gas flow conditions

Sampling Conditions	
Stack dimensions at sampling plane (m)	1.77 x 0.800
Average stack gas temperature (K)	355 (82°C)
Average barometric pressure (mB)	1011.1
Average static pressure (mB)	1.79
Average stack pressure (mB)	1012.9
Average moisture content (%v/v)	0.72
Average oxygen concentration, dry basis (%v/v)	20.9
Average carbon dioxide concentration, dry basis (%v/v)	0.040
Dry molecular weight of stack gas (g/g mole)	28.84
Wet molecular weight of stack gas (g/g mole)	28.76
Dry gas density of stack gas (kg/m³)	1.287
Wet gas density of stack gas (kg/m³)	1.284
Average velocity at sampling plane (m/s)	21.3
Actual gas flow rate (m ³ /min)	1,810
Gas flow rate at STP, dry (Nm ³ /min)	1,380

RESULTS – Cement Mill 3 Exhaust Stack continued

Parameter	Sampling Period	Concentration (mg/m³)	NSW EPA Limit (mg/m³)	Emission Rate (g/min)
Total Solid Particles	15:54 – 16:54	< 1	20	< 1
PM ₁₀ Particles	15:54 - 10:54	< 1	N/A	< 1
Type 1 & 2 substances ^e	14:55 – 16:55	0.0014	1.0	0.0019

Table 14: Cement Mill 3 Exhaust Stack - Summary of test results

Table 15: Cement Mill 3 Exhaust Stack – Type 1 & 2 substances and their compounds

Metal	Concentration (mg/Nm³)	Emission Rate (g/min)	
Type 1 substances and their compounds			
Antinomy (Sb) & its compounds	< 0.0001	< 0.0002	
Arsenic (As) & its compounds	< 0.0001	< 0.0002	
Cadmium (Cd) & its compounds	< 0.00003	< 0.00004	
Lead (Pb) & its compounds	0.00032	0.00044	
Mercury (Hg) & its compounds	< 0.00003	< 0.00004	
Type 2 substances and their compounds			
Beryllium (Be) & its compounds	< 0.0001	< 0.0002	
Chromium (Cr) & its compounds	0.00018	0.00025	
Cobalt (Co) & its compounds	< 0.0001	< 0.0002	
Manganese (Mn) & its compounds	0.00090	0.0012	
Nickel (Ni) & its compounds	< 0.0001	< 0.0002	
Selenium (Se) & its compounds	< 0.0001	< 0.0002	
Tin (Sn) & its compounds	< 0.0001	< 0.0002	
Vanadium (V) & its compounds	< 0.0001	< 0.0002	
TOTAL TYPE 1 & 2 SUBSTANCES AND THEIR COMPOUNDS	0.0014	0.0019	

END OF REPORT

^e Type 1 & 2 substances include As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, Sn, V & their compounds